- A+
时间回到2017年,那时神经科学家使用数学的一个经典分支用新的方式探索了人脑的结构。
他们发现我们的人脑充满着多维度的几何结构,这些几何结构在多达11个维度中运行。
此前,我们认为世界是三维的,所以这个发现听起来有一点玩笑的意味,但这一研究的结果成为了理解人脑这一我们目前所知的最复杂结构的构造的重要一步。
蓝脑(Blue Brain)是一家来自瑞士的研究机构,其主要贡献是建立一个由超级计算机驱动的人脑模型。
该团队使用了一个名为代数拓扑的数学分支,这一分支主要是用来描述物质的属性和空间,并且无论物体的形状发生什么变化,描述都会保持客观,不受影响。
研究人员发现一组神经元会和不同的“派系”发生联系,而属于同一“派系”的神经元会决定 “派系”的大小,并且把“派系”变成高维度的几何构造,这里的“维度”是一个数学概念,而不是时空概念。
瑞士EPFL 研究所主要研究人员,神经科学家Henry Markram表示:“我们发现了一个自己从未想象过的世界。”
“即使只探索我们大脑的一小部分,我们都能找到数以千万计的高维度构造,它们是七维的,而且在有些神经网络中,我们甚至找到了十一维的结构。”
需要声明的是,这里所指的维度并不是大众所认为的空间维度,我们的宇宙在空间上而言是三维的,此外还有一个时间维度。
这里说的维度表示的是研究人员看待神经元派系的方式,而这种方式又决定了神经元之间的联系到底有多紧密。
在2017年发表的一篇文章中,研究人员解释道:“神经元网络通常基于完全相连的神经节点群组进行分析,这种完全相连的神经节点群组就是派系。一个派系中神经元的数量决定了派系的大小,或者,更正式地说,神经元的数量就决定了派系的维度。”
根据估算,人脑中的神经元数量达到了惊人的860亿个, 并且每个细胞都会形成连接网络,与每一个可能的方向发生连接。这么做形成的巨大细胞网络让我们有了思考能力和对事物的觉察。
大脑中发生的连接与合作是如此地数量庞大,这也难怪我们至今还没有彻底探明人脑的神经网络是如何运行的。
但是研究团队构建的数学框架让我们向某一日研发出数字人脑模型的目标又靠近了一步。
为了进行数学测试,研究部团队使用了由蓝脑团队在2015年发布的新大脑皮质的细节模型。
新大脑皮质被看作是人脑最新进化出来的部分,管控着认知和感官知觉等人类的高级功能。
在研发了新大脑皮层的数学框架,并且在虚拟刺激装置上进行实验之后,研究团队确定了实验在大鼠的脑组织上所产生的结果。
根据研究把人员的说法,代数拓扑理论为识别神经网络中的细节提供了工具。这种细节的识别涉及对个体神经元的近距离观察以及将人脑作为一个更大规模的整体结构进行研究这两个方面。
将两方面的结果综合考虑后,研究人员就能够识别人脑中高维度的几何结构。这种结构是由紧密连接的神经元(派系)和期间的空隙空间(腔体)构成的。
研究团队写道:“我们发现了大量不同种类高维度派系和腔体。它们有的是人工合成的,有的是生物自发形成的。而在此之前,我们在神经网络中并没有发现这些东西。
研究团队中的来自EPFL的数学家Kathryn Hess认为,代数拓扑既是望远镜又是显微镜。
“代数拓扑既可以放大神经网络,像从一片森林里找出一棵树一样帮助我们找到隐藏的结构,同时还能帮我们看见空余的空间。”
这些空的腔体对于大脑的功能而言非常重要,当研究人员给予模拟人脑组织一些刺激的时候,它们发现神经元会用一种非常有条理的方式对刺激做出反应。
团队研究研究人员,苏格兰阿伯丁大学数学家Ran Levi说:“这就好像是我们的人脑用多维度砖块建造塔体然后将塔体夷为平地的方式对刺激做出反应。首先建造一根杆(一维),然后建造木板(二维),接着建造块状物(三维),当然我们还可以建造四维和五维的更加复杂的几何体。”
“在这个过程中,大脑的活跃程度就好像是建造一个多维度的沙堡,随着活跃程度的逐渐降低,沙堡又渐渐解体。”
实验结果为展现了一幅精妙的图景,告诉我们大脑究竟是怎样处理信息的。研究人员同时指出,我们还不确定到底是什么让神经元派系和腔体标称了它们现在的样子。
并且,研究人员需要进行更多的研究来探究这些多维度的几何体是怎样形成的,以及它们和多种复杂的认知任务有什么关系。